Linear Algebra II

08/04/2013, Monday, 9:00-12:00

1 Inner product spaces and Gram-Schmidt process
$3+6+(6+3)=18 \mathrm{pts}$
(a) Let v_{1}, v_{2}, and v_{3} be nonzero vectors of an inner product space V. Show that v_{1}, v_{2}, and v_{3} are linearly independent if $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set of vectors.
(b) Consider the vector space P_{4}. Let

$$
\langle p, q\rangle=p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}
$$

where $p(x)=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}$ and $q(x)=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}$. Show that $\langle\cdot, \cdot\rangle$ is an inner product on P_{4}.
(c) Consider the vector space P_{4}. Let S be the subspace spanned by the vectors $1,1+x$, and $(1+x)^{2}$.
(i) By applying the Gram-Schmidt process, find an orthonormal basis for the subspace S.
(ii) Find the vector p in S that is closest to the vector $(1+x)^{3}$.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process, least-squares approximation

Solution:

(1a):
Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set of vectors, we know that

$$
\begin{equation*}
\left\langle v_{i}, v_{j}\right\rangle=0 \tag{1}
\end{equation*}
$$

whenever $i \neq j$. Also, we know that

$$
\begin{equation*}
\left\|v_{i}\right\|^{2}=\left\langle v_{i}, v_{i}\right\rangle \neq 0 \tag{2}
\end{equation*}
$$

since v_{i} is nonzero. Let c_{1}, c_{2}, and c_{3} be scalars such that

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0
$$

Then, it follows from (1) that

$$
0=\left\langle v_{i}, c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}\right\rangle=c_{i}\left\langle v_{i}, v_{i}\right\rangle=c_{i}\left\|v_{i}\right\|^{2}
$$

for all $i \in\{1,2,3\}$. In view of (2), we get $c_{i}=0$ for all $i \in\{1,2,3\}$. Therefore, the vectors v_{1}, v_{2}, and v_{3} are linearly independent.
(1b):
An inner product on P_{4} satisfies the following properties:
i. $\langle p, p\rangle \geqslant 0$ and $\langle p, p\rangle=0$ if and only if $p=0$
ii. $\langle p, q\rangle=\langle q, p\rangle$
iii. $\langle p, \alpha q+\beta r\rangle=\alpha\langle p, q\rangle+\beta\langle p, r\rangle$
for all $p, q, r \in P_{4}$ and $\alpha, \beta \in \mathbb{R}$.
Note that $\langle p, p\rangle=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2} \geqslant 0$ for $p(x)=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}$. Moreover, $p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=0$ if and only if $p_{0}=p_{1}=p_{2}=p_{3}=0$, i.e. $p(x)=0$. Therefore, the first condition is met.

To prove the second condition is satisfied, let $p(x)=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}$ and $q(x)=$ $q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}$. Note that

$$
\begin{aligned}
\langle p, q\rangle & =p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3} \\
& =q_{0} p_{0}+q_{1} p_{1}+q_{2} p_{2}+q_{3} p_{3} \\
& =\langle q, p\rangle .
\end{aligned}
$$

This means that the second condition is satisfied too.
Finally, let $p(x)=p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}, q(x)=q_{0}+q_{1} x+q_{2} x^{2}+q_{3} x^{3}$, and $r(x)=$ $r_{0}+r_{1} x+r_{2} x^{2}+r_{3} x^{3}$. Note that

$$
\begin{aligned}
\langle p, \alpha q+\beta r\rangle & =p_{0}\left(\alpha q_{0}+\beta r_{0}\right)+p_{1}\left(\alpha q_{1}+\beta r_{1}\right)+p_{2}\left(\alpha q_{2}+\beta r_{2}\right)+p_{3}\left(\alpha q_{3}+\beta r_{3}\right) \\
& =\alpha\left(p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}+p_{3} q_{3}\right)+\beta\left(p_{0} r_{0}+p_{1} r_{1}+p_{2} r_{2}+p_{3} r_{3}\right) \\
& =\alpha\langle p, q\rangle+\beta\langle p, r\rangle
\end{aligned}
$$

for all $\alpha, \beta \in \mathbb{R}$. Consequently, the third condition is satisfied.
Therefore, $\langle\cdot, \cdot\rangle$ is an inner product on P_{4}.

(1c-i):

To apply the Gram-Schmidt process, we first note that

$$
\begin{aligned}
\langle 1,1\rangle & =1 \cdot 1+0 \cdot 0+0 \cdot 0+0 \cdot 0=1 \\
\langle 1, x\rangle & =1 \cdot 0+0 \cdot 1+0 \cdot 0+0 \cdot 0=0 \\
\left\langle 1, x^{2}\right\rangle & =1 \cdot 0+0 \cdot 0+0 \cdot 1+0 \cdot 0=0 \\
\langle x, x\rangle & =0 \cdot 0+1 \cdot 1+0 \cdot 0+0 \cdot 0=1 \\
\left\langle x, x^{2}\right\rangle & =0 \cdot 0+1 \cdot 0+0 \cdot 1+0 \cdot 0=0 \\
\left\langle x^{2}, x^{2}\right\rangle & =0 \cdot 0+0 \cdot 0+0 \cdot 0+1 \cdot 1=1
\end{aligned}
$$

By applying the Gram-Schmidt process, we obtain:

$$
\begin{array}{lr}
u_{1}=\frac{1}{\|1\|} \\
u_{1}=1 \\
u_{2}=\frac{1+x-p_{1}}{\left\|1+x-p_{1}\right\|} & p_{1}=\langle 1+x, 1\rangle \cdot 1 \\
& =1 \\
& 1+x-p_{1}=x \\
& \left\|1+x-p_{1}\right\|^{2}=\langle x, x\rangle=1 \\
& \left\|1+x-p_{1}\right\|=1
\end{array}
$$

$$
u_{3}=\frac{(1+x)^{2}-p_{2}}{\left\|(1+x)^{2}-p_{2}\right\|} \quad p_{2}=\left\langle(1+x)^{2}, 1\right\rangle \cdot 1+\left\langle(1+x)^{2}, x\right\rangle \cdot x
$$

$$
u_{3}=x^{2}
$$

(1c-ii):

The vector p in S that is closest to the vector $(1+x)^{3}$ can be found by projection as follows:

$$
p=\left\langle(1+x)^{3}, 1\right\rangle \cdot 1+\left\langle(1+x)^{3}, x\right\rangle \cdot x+\left\langle(1+x)^{3}, x^{2}\right\rangle \cdot x^{2} .
$$

Note that

$$
\left\langle x^{3}, 1\right\rangle=\left\langle x^{3}, x\right\rangle=\left\langle x^{3}, x^{2}\right\rangle=0
$$

Therefore, we have

$$
p=1+3 x+3 x^{2}
$$

2 Eigenvalues and diagonalization

$$
4+4+(2+8)=18 \mathrm{pts}
$$

(a) Let $M \in \mathbb{C}^{m \times m}$ be of the form $M=A+i B$ where $A, B \in \mathbb{R}^{m \times m}$. Show that M is Hermitian if and only if $A=A^{T}$ and $B=-B^{T}$.
(b) Let $M \in \mathbb{R}^{m \times m}$ be a matrix with $M=\alpha M^{T}$ for some real number α. Show that M is unitarily diagonalizable.
(c) Consider the matrix

$$
M=\left[\begin{array}{rrr}
3 & -2 & 2 \\
-2 & 0 & -1 \\
2 & -1 & 0
\end{array}\right]
$$

(i) Show that the eigenvalues are $-1,-1$ and 5 .
(ii) Find an orthogonal matrix U that diagonalizes M.

REQUIRED KNOWLEDGE: eigenvalues, eigenvectors, Hermitian matrices, orthogonal matrices, diagonalization by orthogonal matrices.

SOLUTION:

(2a):
The matrix M is Hermitian if $M=M^{H}$ where M^{H} denotes the conjugate transpose. Then, we have

$$
\begin{aligned}
M=M^{H} & \Longleftrightarrow A+i B=(A+i B)^{H} \\
& \Longleftrightarrow A+i B=A^{T}-i B^{T} \\
& \Longleftrightarrow A=A^{T} \text { and } B=-B^{T}
\end{aligned}
$$

(2b):

A matrix is unitarily diagonalizable if and only if it is normal. Note that

$$
M M^{H}=M M^{T}=\alpha\left(M^{T}\right)^{2} \quad \text { and } \quad M^{H} M=M^{T} M=\alpha\left(M^{T}\right)^{2} .
$$

Therefore, M is normal and hence unitarily diagonalizable.

(2c-i):

The characteristic polynomial of M is given by

$$
\begin{aligned}
p_{M}(\lambda) & =\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
3-\lambda & -2 & 2 \\
-2 & -\lambda & -1 \\
2 & -1 & -\lambda
\end{array}\right]\right) \\
& =\lambda^{2}(3-\lambda)+4+4+4 \lambda-(3-\lambda)+4 \lambda \\
& =-\lambda^{3}+3 \lambda^{2}+9 \lambda+5
\end{aligned}
$$

Note that $p_{M}(5)=-125+3 \cdot 25+9 \cdot 5+5=-125+75+45+5=0$. Therefore, 5 is an eigenvalue. Note also that

$$
\frac{p_{M}(\lambda)}{5-\lambda}=\lambda^{2}+2 \lambda+1
$$

Then, we can conclude that the two other eigenvalues are -1 and -1 .

(2c-ii):

For the eigenvalue 5, we can find an eigenvector by solving the following linear equation:

$$
0=(M-5 I) x=\left[\begin{array}{rrr}
-2 & -2 & 2 \\
-2 & -5 & -1 \\
2 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

This results in

$$
x=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

For the eigenvalue -1 , we need to find two orthonormal eigenvectors. To do so, we solve the following linear equations:

$$
0=(M+I) x=\left[\begin{array}{rrr}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

This results in $x_{2}=2 x_{1}+x_{3}$ and leads to, for instance, the eigenvectors:

$$
y=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad z=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

To orthonormalize these two vectors, we can use the Gram-Schmidt process:

$$
\begin{aligned}
& u_{1}=\frac{y}{\|y\|} \quad\|y\|^{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]^{T}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=2 \\
& \|y\|=\sqrt{2} \\
& u_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& u_{2}=\frac{z-p_{1}}{\left\|z-p_{1}\right\|} \quad p_{1}=\left\langle z, u_{1}\right\rangle \cdot u_{1} \\
& =\frac{1}{2}\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]^{T}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& z-p_{1}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]-\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \\
& \left\|z-p_{1}\right\|^{2}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]^{T}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=3 \\
& \left\|z-p_{1}\right\|=\frac{1}{\sqrt{3}} \\
& u_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] .
\end{aligned}
$$

Therefore, we have

$$
\left[\begin{array}{rrr}
3 & -2 & 2 \\
-2 & 0 & -1 \\
2 & -1 & 0
\end{array}\right]=\left[\begin{array}{rrr}
2 / \sqrt{6} & 0 & 1 / \sqrt{3} \\
-1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{rrr}
2 / \sqrt{6} & 0 & 1 / \sqrt{3} \\
-1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3}
\end{array}\right]^{-1}
$$

3 Positive definiteness

(a) Let $M \in \mathbb{R}^{m \times m}$ be a symmetric matrix. Show that M^{2} is positive definite if and only if M is nonsingular.
(b) Check if the matrix

$$
M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

is positive definite or not.

REQUIRED KNOWLEDGE: positive/definite matrices, leading principal minor test for positive definiteness.

Solution:

(3a):
Note that $M^{2}=M^{T} M$ since M is symmetric. Then, we have

$$
\begin{aligned}
M^{2} \text { is positive definite } & \Longleftrightarrow x^{T} M^{2} x>0 \text { for all nonzero } x \in \mathbb{R}^{m} \\
& \Longleftrightarrow x^{T} M^{T} M x>0 \text { for all nonzero } x \in \mathbb{R}^{m} \\
& \Longleftrightarrow\|M x\|^{2}>0 \text { for all nonzero } x \in \mathbb{R}^{m} \\
& \Longleftrightarrow M x \neq 0 \text { for all nonzero } x \in \mathbb{R}^{m} \\
& \Longleftrightarrow M \text { is nonsingular }
\end{aligned}
$$

(3b):
A symmetric matrix M is positive definite if and only if all its leading principal minors are positive. Note that the leading principal minors can be computed as follows:

$$
\begin{aligned}
\operatorname{det}(1) & =1 \\
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
1 & 2
\end{array}\right]\right) & =2-1=1 \\
\operatorname{det}\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]\right) & =1 \cdot 2 \cdot 3+1 \cdot 2 \cdot 1+1 \cdot 1 \cdot 2-1 \cdot 2 \cdot 1-1 \cdot 2 \cdot 2-1 \cdot 1 \cdot 3 \\
& =6+2+2-2-4-3=1 .
\end{aligned}
$$

Since all leading principal minors are positive, the matrix is positive definite.

Consider the matrix

$$
M=\left[\begin{array}{rrr}
a & -b & 0 \\
b & a & -b \\
0 & b & a
\end{array}\right]
$$

where a and b are positive real numbers.
(a) Find a singular value decomposition of M.
(b) Find the best rank 2 approximation of M.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations.

SOLUTION:

(4a):
Note that

$$
M^{T} M=\left[\begin{array}{ccc}
a^{2}+b^{2} & 0 & -b^{2} \\
0 & a^{2}+2 b^{2} & 0 \\
-b^{2} & 0 & a^{2}+b^{2}
\end{array}\right]
$$

Then, the characteristic polynomial of $M^{T} M$ can be found as

$$
\begin{aligned}
p_{M^{T} M}(\lambda) & =\operatorname{det}\left(\left[\begin{array}{ccc}
a^{2}+b^{2}-\lambda & 0 & -b^{2} \\
0 & a^{2}+2 b^{2}-\lambda & 0 \\
-b^{2} & 0 & a^{2}+b^{2}-\lambda
\end{array}\right]\right) \\
& =\left(a^{2}+2 b^{2}-\lambda\right)\left[\left(a^{2}+b^{2}-\lambda\right)^{2}-b^{4}\right]
\end{aligned}
$$

by expanding the determinant with respect to the second row (or column). Note that

$$
\begin{aligned}
p_{M^{T} M}(\lambda) & =\left(a^{2}+2 b^{2}-\lambda\right)\left[\left(a^{2}+b^{2}-\lambda\right)^{2}-b^{4}\right] \\
& =\left(a^{2}+2 b^{2}-\lambda\right)\left(a^{2}+b^{2}-\lambda+b^{2}\right)\left(a^{2}+b^{2}-\lambda-b^{2}\right) .
\end{aligned}
$$

Since b is not zero, we get

$$
\lambda_{1}=\lambda_{2}=a^{2}+2 b^{2}>\lambda_{3}=a^{2}
$$

Since a is a positive real number, this results in the following singular values:

$$
\sigma_{1}=\sigma_{2}=\sqrt{a^{2}+2 b^{2}}>\sigma_{3}=a
$$

Next, we need to diagonalize $M^{T} M$ in order to obtain the orthogonal matrix V. To do so, we first compute eigenvectors of $M^{T} M$.

For the eigenvalue $a^{2}+2 b^{2}$, we have

$$
0=\left(M^{T} M-\left(a^{2}+2 b^{2}\right) I\right) x=\left[\begin{array}{ccc}
-b^{2} & 0 & -b^{2} \\
0 & 0 & 0 \\
-b^{2} & 0 & -b^{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

This results in, for instance, the following orthonormal eigenvectors

$$
v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

since b is not zero.
For the eigenvalue a^{2}, we have

$$
0=\left(M^{T} M-a^{2} I\right) v=\left[\begin{array}{ccc}
b^{2} & 0 & -b^{2} \\
0 & 2 b^{2} & 0 \\
-b^{2} & 0 & b^{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

This yields the following eigenvector

$$
v_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

since b is not zero. Hence, we get

$$
V=\left[\begin{array}{ccc}
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & 0 \\
-1 / \sqrt{2} & 0 & 1 / \sqrt{2}
\end{array}\right]
$$

Note that the rank of M is equal to the number of nonzero singular values. Thus, $r=\operatorname{rank}(M)=3$. By using the formula

$$
u_{i}=\frac{1}{\sigma_{i}} M v_{i}
$$

for $i=1,2,3$, we obtain

$$
\begin{aligned}
& u_{1}=\frac{1}{\sqrt{2\left(a^{2}+2 b^{2}\right)}}\left[\begin{array}{rrr}
a & -b & 0 \\
b & a & -b \\
0 & b & a
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\frac{1}{\sqrt{2\left(a^{2}+2 b^{2}\right)}}\left[\begin{array}{c}
a \\
2 b \\
-a
\end{array}\right] \\
& u_{2}=\frac{1}{\sqrt{a^{2}+2 b^{2}}}\left[\begin{array}{rrr}
a & -b & 0 \\
b & a & -b \\
0 & b & a
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\frac{1}{\sqrt{a^{2}+2 b^{2}}}\left[\begin{array}{c}
-b \\
a \\
b
\end{array}\right] \\
& u_{3}=\frac{1}{\sqrt{2} a}\left[\begin{array}{rrr}
a & -b & 0 \\
b & a & -b \\
0 & b & a
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Consequently, one singular value decomposition can be given by:

$$
\left[\begin{array}{rrr}
a & -b & 0 \\
b & a & -b \\
0 & b & a
\end{array}\right]=\left[\begin{array}{ccc}
\frac{a}{\sqrt{2\left(a^{2}+2 b^{2}\right)}} & \frac{-b}{\sqrt{a^{2}+2 b^{2}}} & \frac{1}{\sqrt{2}} \\
\frac{2 b}{\sqrt{2\left(a^{2}+2 b^{2}\right)}} & \frac{a}{\sqrt{a^{2}+2 b^{2}}} & 0 \\
\frac{-a}{\sqrt{2\left(a^{2}+2 b^{2}\right)}} & \frac{b}{\sqrt{a^{2}+2 b^{2}}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{a^{2}+2 b^{2}} & 0 & 0 \\
0 & \sqrt{a^{2}+2 b^{2}} & 0 \\
0 & 0 & a
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right] .
$$

(4b):
The best rank 2 approximation can be obtained as follows:

$$
\begin{aligned}
\tilde{M} & =\left[\begin{array}{cccc}
\frac{a}{\sqrt{2\left(a^{2}+2 b^{2}\right)}} & \frac{-b}{\sqrt{a^{2}+2 b^{2}}} & \frac{1}{\sqrt{2}} \\
\frac{2 b}{\sqrt{2\left(a^{2}+2 b^{2}\right)}} & \frac{a}{\sqrt{a^{2}+2 b^{2}}} & 0 \\
\frac{-a}{\sqrt{2\left(a^{2}+2 b^{2}\right)}} & \frac{b}{\sqrt{a^{2}+2 b^{2}}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{a^{2}+2 b^{2}} & 0 & 0 \\
0 & \sqrt{a^{2}+2 b^{2}} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{a}{\sqrt{2}} & -b & 0 \\
\frac{2 b}{\sqrt{2}} & a & 0 \\
\frac{-a}{\sqrt{2}} & b & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{a}{2} & -b & \frac{a}{2} \\
b & a & b \\
\frac{-a}{2} & b & \frac{-a}{2}
\end{array}\right] .
\end{aligned}
$$

5 Cayley-Hamilton theorem and Jordan canonical form

Consider the matrix

$$
M=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]
$$

where a and b are real numbers with $a \neq 0$.
(a) By using Cayley-Hamilton theorem, show that $\left(M^{2}-I\right)^{999}=0$.
(b) Put the matrix M into Jordan canonical form.

REQUIRED KNOWLEDGE: Cayley-Hamilton theorem, Jordan canonical form.

SOLUTION:

(5a):
The characteristic polynomial of M can be found as:

$$
p_{M}(\lambda)=\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & a & b \\
0 & 1-\lambda & a \\
0 & 0 & 1-\lambda
\end{array}\right]\right)=(1-\lambda)^{3} .
$$

Note that $M^{2}-I=(M-I)(M+I)=(M+I)(M-I)$. Thus, we get $\left(M^{2}-I\right)^{999}=$ $(M-I)^{999}(M+I)^{999}$. It follows from Cayley-Hamilton theorem that $(M-I)^{3}=0$. Therefore, we get $\left(M^{2}-I\right)^{999}=0$.
(5b):
Since $p_{M}(\lambda)=(1-\lambda)^{3}$, there is only one eigenvalue $\lambda=1$ with multiplicity 3 . To find the linearly independent eigenvectors, we need to solve the following linear equation:

$$
0=(M-I) x=\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

Since a is not zero, this yields only one linearly independent eigenvector:

$$
x=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

This means that the Jordan form should be $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$. Note that

$$
(M-I)^{2}=\left[\begin{array}{ccc}
0 & 0 & a^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad(M-I)^{3}=0
$$

Then, we need to solve $(M-I)^{2} v=x$, that is

$$
\left[\begin{array}{ccc}
0 & 0 & a^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Since a is not zero, one solution can be found as:

$$
v=\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{a^{2}}
\end{array}\right]
$$

Note that

$$
(M-I) v=\left[\begin{array}{ccc}
0 & a & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{a^{2}}
\end{array}\right]=\left[\begin{array}{c}
\frac{b}{a^{2}} \\
\frac{1}{a} \\
0
\end{array}\right] \quad \text { and } \quad(M-I)^{2} v=\left[\begin{array}{ccc}
0 & 0 & a^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
\frac{1}{a^{2}}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right] .
$$

Therefore, the Jordan canonical form can be given as:

$$
\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & \frac{b}{a^{2}} & 0 \\
0 & \frac{1}{a} & 0 \\
0 & 0 & \frac{1}{a^{2}}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & \frac{b}{a^{2}} & 0 \\
0 & \frac{1}{a} & 0 \\
0 & 0 & \frac{1}{a^{2}}
\end{array}\right]^{-1} .
$$

